Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exceptional jumps of Picard ranks of reductions of K3 surfaces over number fields (1909.07473v3)

Published 16 Sep 2019 in math.NT and math.AG

Abstract: Given a K3 surface $X$ over a number field $K$ with potentially good reduction everywhere, we prove that the set of primes of $K$ where the geometric Picard rank jumps is infinite. As a corollary, we prove that either $X_{\overline{K}}$ has infinitely many rational curves or $X$ has infinitely many unirational specializations. Our result on Picard ranks is a special case of more general results on exceptional classes for K3 type motives associated to GSpin Shimura varieties. These general results have several other applications. For instance, we prove that an abelian surface over a number field $K$ with potentially good reduction everywhere is isogenous to a product of elliptic curves modulo infinitely many primes of $K$.

Summary

We haven't generated a summary for this paper yet.