Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parameter-uniform fitted mesh higher order finite difference scheme for singularly perturbed problem with an interior turning point (1909.07128v1)

Published 16 Sep 2019 in math.NA and cs.NA

Abstract: In this paper, a parameter-uniform fitted mesh finite difference scheme is constructed and analyzed for a class of singularly perturbed interior turning point problems. The solution of this class of turning point problem possess two outflow exponential boundary layers. Parameter-explicit theoretical bounds on the derivatives of the analytical solution are given, which are used in the error analysis of the proposed scheme. The problem is discretized by a hybrid finite difference scheme comprises of midpoint-upwind and central difference operator on an appropriate piecewise-uniform fitted mesh. An error analysis has been carried out for the proposed scheme by splitting the solution into regular and singular components and the method has been shown second order uniform convergent except for a logarithmic factor with respect to the singular perturbation parameter. Some relevant numerical examples are also illustrated to verify computationally the theoretical aspects. Numerical experiments show that the proposed method gives competitive results in comparison to those of other methods exist in the literature.

Citations (2)

Summary

We haven't generated a summary for this paper yet.