Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weak discrete maximum principle of finite element methods in convex polyhedra (1909.06783v2)

Published 15 Sep 2019 in math.NA and cs.NA

Abstract: We prove that the Galerkin finite element solution $u_h$ of the Laplace equation in a convex polyhedron $\varOmega$, with a quasi-uniform tetrahedral partition of the domain and with finite elements of polynomial degree $r\ge 1$, satisfies the following weak maximum principle: \begin{align*} \left|u_{h}\right|{L{\infty}(\varOmega)} \le C\left|u{h}\right|{L{\infty}(\partial \varOmega)} , \end{align*} with a constant $C$ independent of the mesh size $h$. By using this result, we show that the Ritz projection operator $R_h$ is stable in $L\infty$ norm uniformly in $h$ for $r\geq 2$, i.e. \begin{align*} |R_hu|{L{\infty}(\varOmega)} \le C|u|_{L{\infty}(\varOmega)}. \end{align*} Thus we remove a logarithmic factor appearing in the previous results for convex polyhedral domains.

Citations (9)

Summary

We haven't generated a summary for this paper yet.