Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Solving Ergodic Markov Decision Processes and Perfect Information Zero-sum Stochastic Games by Variance Reduced Deflated Value Iteration (1909.06185v1)

Published 13 Sep 2019 in math.OC

Abstract: Recently, Sidford, Wang, Wu and Ye (2018) developed an algorithm combining variance reduction techniques with value iteration to solve discounted Markov decision processes. This algorithm has a sublinear complexity when the discount factor is fixed. Here, we extend this approach to mean-payoff problems, including both Markov decision processes and perfect information zero-sum stochastic games. We obtain sublinear complexity bounds, assuming there is a distinguished state which is accessible from all initial states and for all policies. Our method is based on a reduction from the mean payoff problem to the discounted problem by a Doob h-transform, combined with a deflation technique. The complexity analysis of this algorithm uses at the same time the techniques developed by Sidford et al. in the discounted case and non-linear spectral theory techniques (Collatz-Wielandt characterization of the eigenvalue).

Summary

We haven't generated a summary for this paper yet.