Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DeepIST: Deep Image-based Spatio-Temporal Network for Travel Time Estimation (1909.05637v1)

Published 5 Sep 2019 in cs.CV, cs.LG, and stat.ML

Abstract: Estimating the travel time for a given path is a fundamental problem in many urban transportation systems. However, prior works fail to well capture moving behaviors embedded in paths and thus do not estimate the travel time accurately. To fill in this gap, in this work, we propose a novel neural network framework, namely {\em Deep Image-based Spatio-Temporal network (DeepIST)}, for travel time estimation of a given path. The novelty of DeepIST lies in the following aspects: 1) we propose to plot a path as a sequence of "generalized images" which include sub-paths along with additional information, such as traffic conditions, road network and traffic signals, in order to harness the power of convolutional neural network model (CNN) on image processing; 2) we design a novel two-dimensional CNN, namely {\em PathCNN}, to extract spatial patterns for lines in images by regularization and adopting multiple pooling methods; and 3) we apply a one-dimensional CNN to capture temporal patterns among the spatial patterns along the paths for the estimation. Empirical results show that DeepIST soundly outperforms the state-of-the-art travel time estimation models by 24.37\% to 25.64\% of mean absolute error (MAE) in multiple large-scale real-world datasets.

Citations (47)

Summary

We haven't generated a summary for this paper yet.