Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Global Markov Property for a Mixture of DAGs (1909.05418v2)

Published 12 Sep 2019 in math.ST and stat.TH

Abstract: Real causal processes may contain feedback loops and change over time. In this paper, we model cycles and non-stationary distributions using a mixture of directed acyclic graphs (DAGs). We then study the conditional independence (CI) relations induced by a density that factorizes according to a mixture of DAGs in two steps. First, we generalize d-separation for a single DAG to mixture d-separation for a mixture of DAGs. We then utilize the mixture d-separation criterion to derive a global Markov property that allows us to read off the CI relations induced by a mixture of DAGs using a particular summary graph. This result has potentially far reaching applications in algorithm design for causal discovery.

Summary

We haven't generated a summary for this paper yet.