Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

How to make latent factors interpretable by feeding Factorization machines with knowledge graphs (1909.05038v1)

Published 11 Sep 2019 in cs.IR

Abstract: Model-based approaches to recommendation can recommend items with a very high level of accuracy. Unfortunately, even when the model embeds content-based information, if we move to a latent space we miss references to the actual semantics of recommended items. Consequently, this makes non-trivial the interpretation of a recommendation process. In this paper, we show how to initialize latent factors in Factorization Machines by using semantic features coming from a knowledge graph in order to train an interpretable model. With our model, semantic features are injected into the learning process to retain the original informativeness of the items available in the dataset. The accuracy and effectiveness of the trained model have been tested using two well-known recommender systems datasets. By relying on the information encoded in the original knowledge graph, we have also evaluated the semantic accuracy and robustness for the knowledge-aware interpretability of the final model.

Citations (47)

Summary

We haven't generated a summary for this paper yet.