Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

TMA: Tera-MACs/W Neural Hardware Inference Accelerator with a Multiplier-less Massive Parallel Processor (1909.04551v1)

Published 8 Sep 2019 in cs.DC, cs.AR, and eess.SP

Abstract: Computationally intensive Inference tasks of Deep neural networks have enforced revolution of new accelerator architecture to reduce power consumption as well as latency. The key figure of merit in hardware inference accelerators is the number of multiply-and-accumulation operations per watt (MACs/W), where, the state-of-the-arts MACs/W remains several hundreds Giga-MACs/W. We propose a Tera-MACS/W neural hardware inference Accelerator (TMA) with 8-bit activations and scalable integer weights less than 1-byte. The architectures main feature is configurable neural processing element for matrix-vector operations. The proposed neural processing element has Multiplier-less Massive Parallel Processor to work without any multiplications, which makes it attractive for energy efficient high-performance neural network applications. We benchmark our systems latency, power, and performance using Alexnet trained on ImageNet. Finally, we compared our accelerators throughput and power consumption to the prior works. The proposed accelerator outperforms the state of the art in terms of energy and area achieving 2.3 TMACS/[email protected] V, 65 nm CMOS technology.

Citations (1)

Summary

We haven't generated a summary for this paper yet.