Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Preech: A System for Privacy-Preserving Speech Transcription (1909.04198v4)

Published 9 Sep 2019 in cs.CR, cs.SD, and eess.AS

Abstract: New Advances in machine learning have made Automated Speech Recognition (ASR) systems practical and more scalable. These systems, however, pose serious privacy threats as speech is a rich source of sensitive acoustic and textual information. Although offline and open-source ASR eliminates the privacy risks, its transcription performance is inferior to that of cloud-based ASR systems, especially for real-world use cases. In this paper, we propose Pr$\epsilon\epsilon$ch, an end-to-end speech transcription system which lies at an intermediate point in the privacy-utility spectrum. It protects the acoustic features of the speakers' voices and protects the privacy of the textual content at an improved performance relative to offline ASR. Additionally, Pr$\epsilon\epsilon$ch provides several control knobs to allow customizable utility-usability-privacy trade-off. It relies on cloud-based services to transcribe a speech file after applying a series of privacy-preserving operations on the user's side. We perform a comprehensive evaluation of Pr$\epsilon\epsilon$ch, using diverse real-world datasets, that demonstrates its effectiveness. Pr$\epsilon\epsilon$ch provides transcriptions at a 2% to 32.25% (mean 17.34%) relative improvement in word error rate over Deep Speech, while fully obfuscating the speakers' voice biometrics and allowing only a differentially private view of the textual content.

Citations (43)

Summary

We haven't generated a summary for this paper yet.