Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
Gemini 2.5 Pro Premium
42 tokens/sec
GPT-5 Medium
18 tokens/sec
GPT-5 High Premium
12 tokens/sec
GPT-4o
92 tokens/sec
DeepSeek R1 via Azure Premium
92 tokens/sec
GPT OSS 120B via Groq Premium
480 tokens/sec
Kimi K2 via Groq Premium
195 tokens/sec
2000 character limit reached

Balancing Reconstruction Quality and Regularisation in ELBO for VAEs (1909.03765v1)

Published 9 Sep 2019 in cs.LG, cs.CV, and stat.ML

Abstract: A trade-off exists between reconstruction quality and the prior regularisation in the Evidence Lower Bound (ELBO) loss that Variational Autoencoder (VAE) models use for learning. There are few satisfactory approaches to deal with a balance between the prior and reconstruction objective, with most methods dealing with this problem through heuristics. In this paper, we show that the noise variance (often set as a fixed value) in the Gaussian likelihood p(x|z) for real-valued data can naturally act to provide such a balance. By learning this noise variance so as to maximise the ELBO loss, we automatically obtain an optimal trade-off between the reconstruction error and the prior constraint on the posteriors. This variance can be interpreted intuitively as the necessary noise level for the current model to be the best explanation of the observed dataset. Further, by allowing the variance inference to be more flexible it can conveniently be used as an uncertainty estimator for reconstructed or generated samples. We demonstrate that optimising the noise variance is a crucial component of VAE learning, and showcase the performance on MNIST, Fashion MNIST and CelebA datasets. We find our approach can significantly improve the quality of generated samples whilst maintaining a smooth latent-space manifold to represent the data. The method also offers an indication of uncertainty in the final generative model.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.