Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
37 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
37 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
10 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Transfer Reward Learning for Policy Gradient-Based Text Generation (1909.03622v1)

Published 9 Sep 2019 in cs.LG, cs.CL, cs.CV, and stat.ML

Abstract: Task-specific scores are often used to optimize for and evaluate the performance of conditional text generation systems. However, such scores are non-differentiable and cannot be used in the standard supervised learning paradigm. Hence, policy gradient methods are used since the gradient can be computed without requiring a differentiable objective. However, we argue that current n-gram overlap based measures that are used as rewards can be improved by using model-based rewards transferred from tasks that directly compare the similarity of sentence pairs. These reward models either output a score of sentence-level syntactic and semantic similarity between entire predicted and target sentences as the expected return, or for intermediate phrases as segmented accumulative rewards. We demonstrate that using a \textit{Transferable Reward Learner} leads to improved results on semantical evaluation measures in policy-gradient models for image captioning tasks. Our InferSent actor-critic model improves over a BLEU trained actor-critic model on MSCOCO when evaluated on a Word Mover's Distance similarity measure by 6.97 points, also improving on a Sliding Window Cosine Similarity measure by 10.48 points. Similar performance improvements are also obtained on the smaller Flickr-30k dataset, demonstrating the general applicability of the proposed transfer learning method.

Citations (1)

Summary

We haven't generated a summary for this paper yet.