Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Formulating Manipulable Argumentation with Intra-/Inter-Agent Preferences (1909.03616v2)

Published 9 Sep 2019 in cs.AI

Abstract: From marketing to politics, exploitation of incomplete information through selective communication of arguments is ubiquitous. In this work, we focus on development of an argumentation-theoretic model for manipulable multi-agent argumentation, where each agent may transmit deceptive information to others for tactical motives. In particular, we study characterisation of epistemic states, and their roles in deception/honesty detection and (mis)trust-building. To this end, we propose the use of intra-agent preferences to handle deception/honesty detection and inter-agent preferences to determine which agent(s) to believe in more. We show how deception/honesty in an argumentation of an agent, if detected, would alter the agent's perceived trustworthiness, and how that may affect their judgement as to which arguments should be acceptable.

Citations (1)

Summary

We haven't generated a summary for this paper yet.