2000 character limit reached
Multiway Cluster Robust Double/Debiased Machine Learning (1909.03489v3)
Published 8 Sep 2019 in econ.EM
Abstract: This paper investigates double/debiased machine learning (DML) under multiway clustered sampling environments. We propose a novel multiway cross fitting algorithm and a multiway DML estimator based on this algorithm. We also develop a multiway cluster robust standard error formula. Simulations indicate that the proposed procedure has favorable finite sample performance. Applying the proposed method to market share data for demand analysis, we obtain larger two-way cluster robust standard errors than non-robust ones.