Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

New Graph-based Features For Shape Recognition (1909.03482v1)

Published 8 Sep 2019 in cs.CV

Abstract: Shape recognition is the main challenging problem in computer vision. Different approaches and tools are used to solve this problem. Most existing approaches to object recognition are based on pixels. Pixel-based methods are dependent on the geometry and nature of the pixels, so the destruction of pixels reduces their performance. In this paper, we study the ability of graphs as shape recognition. We construct a graph that captures the topological and geometrical properties of the object. Then, using the coordinate and relation of its vertices, we extract features that are robust to noise, rotation, scale variation, and articulation. To evaluate our method, we provide different comparisons with state-of-the-art results on various known benchmarks, including Kimia's, Tari56, Tetrapod, and Articulated dataset. We provide an analysis of our method against different variations. The results confirm our performance, especially against noise.

Citations (4)

Summary

We haven't generated a summary for this paper yet.