Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

To lemmatize or not to lemmatize: how word normalisation affects ELMo performance in word sense disambiguation (1909.03135v1)

Published 6 Sep 2019 in cs.CL

Abstract: We critically evaluate the widespread assumption that deep learning NLP models do not require lemmatized input. To test this, we trained versions of contextualised word embedding ELMo models on raw tokenized corpora and on the corpora with word tokens replaced by their lemmas. Then, these models were evaluated on the word sense disambiguation task. This was done for the English and Russian languages. The experiments showed that while lemmatization is indeed not necessary for English, the situation is different for Russian. It seems that for rich-morphology languages, using lemmatized training and testing data yields small but consistent improvements: at least for word sense disambiguation. This means that the decisions about text pre-processing before training ELMo should consider the linguistic nature of the language in question.

Citations (22)

Summary

We haven't generated a summary for this paper yet.