Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improved Hierarchical Patient Classification with Language Model Pretraining over Clinical Notes (1909.03039v3)

Published 6 Sep 2019 in cs.LG, cs.CL, and stat.ML

Abstract: Clinical notes in electronic health records contain highly heterogeneous writing styles, including non-standard terminology or abbreviations. Using these notes in predictive modeling has traditionally required preprocessing (e.g. taking frequent terms or topic modeling) that removes much of the richness of the source data. We propose a pretrained hierarchical recurrent neural network model that parses minimally processed clinical notes in an intuitive fashion, and show that it improves performance for discharge diagnosis classification tasks on the Medical Information Mart for Intensive Care III (MIMIC-III) dataset, compared to models that treat the notes as an unordered collection of terms or that conduct no pretraining. We also apply an attribution technique to examples to identify the words that the model uses to make its prediction, and show the importance of the words' nearby context.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jonas Kemp (7 papers)
  2. Alvin Rajkomar (6 papers)
  3. Andrew M. Dai (40 papers)
Citations (10)