Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Objective Multi-Agent Decision Making: A Utility-based Analysis and Survey (1909.02964v1)

Published 6 Sep 2019 in cs.MA, cs.AI, and cs.LG

Abstract: The majority of multi-agent system (MAS) implementations aim to optimise agents' policies with respect to a single objective, despite the fact that many real-world problem domains are inherently multi-objective in nature. Multi-objective multi-agent systems (MOMAS) explicitly consider the possible trade-offs between conflicting objective functions. We argue that, in MOMAS, such compromises should be analysed on the basis of the utility that these compromises have for the users of a system. As is standard in multi-objective optimisation, we model the user utility using utility functions that map value or return vectors to scalar values. This approach naturally leads to two different optimisation criteria: expected scalarised returns (ESR) and scalarised expected returns (SER). We develop a new taxonomy which classifies multi-objective multi-agent decision making settings, on the basis of the reward structures, and which and how utility functions are applied. This allows us to offer a structured view of the field, to clearly delineate the current state-of-the-art in multi-objective multi-agent decision making approaches and to identify promising directions for future research. Starting from the execution phase, in which the selected policies are applied and the utility for the users is attained, we analyse which solution concepts apply to the different settings in our taxonomy. Furthermore, we define and discuss these solution concepts under both ESR and SER optimisation criteria. We conclude with a summary of our main findings and a discussion of many promising future research directions in multi-objective multi-agent systems.

Citations (125)

Summary

We haven't generated a summary for this paper yet.