Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extreme dimensionality reduction with quantum modelling (1909.02817v2)

Published 6 Sep 2019 in quant-ph, cond-mat.stat-mech, cs.IT, and math.IT

Abstract: Effective and efficient forecasting relies on identification of the relevant information contained in past observations -- the predictive features -- and isolating it from the rest. When the future of a process bears a strong dependence on its behaviour far into the past, there are many such features to store, necessitating complex models with extensive memories. Here, we highlight a family of stochastic processes whose minimal classical models must devote unboundedly many bits to tracking the past. For this family, we identify quantum models of equal accuracy that can store all relevant information within a single two-dimensional quantum system (qubit). This represents the ultimate limit of quantum compression and highlights an immense practical advantage of quantum technologies for the forecasting and simulation of complex systems.

Citations (2)

Summary

We haven't generated a summary for this paper yet.