Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Toward Sim-to-Real Directional Semantic Grasping (1909.02075v3)

Published 4 Sep 2019 in cs.RO

Abstract: We address the problem of directional semantic grasping, that is, grasping a specific object from a specific direction. We approach the problem using deep reinforcement learning via a double deep Q-network (DDQN) that learns to map downsampled RGB input images from a wrist-mounted camera to Q-values, which are then translated into Cartesian robot control commands via the cross-entropy method (CEM). The network is learned entirely on simulated data generated by a custom robot simulator that models both physical reality (contacts) and perceptual quality (high-quality rendering). The reality gap is bridged using domain randomization. The system is an example of end-to-end (mapping input monocular RGB images to output Cartesian motor commands) grasping of objects from multiple pre-defined object-centric orientations, such as from the side or top. We show promising results in both simulation and the real world, along with some challenges faced and the need for future research in this area.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com