Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Video Affective Effects Prediction with Multi-modal Fusion and Shot-Long Temporal Context (1909.01763v1)

Published 1 Sep 2019 in cs.CV and cs.LG

Abstract: Predicting the emotional impact of videos using machine learning is a challenging task considering the varieties of modalities, the complicated temporal contex of the video as well as the time dependency of the emotional states. Feature extraction, multi-modal fusion and temporal context fusion are crucial stages for predicting valence and arousal values in the emotional impact, but have not been successfully exploited. In this paper, we propose a comprehensive framework with novel designs of modal structure and multi-modal fusion strategy. We select the most suitable modalities for valence and arousal tasks respectively and each modal feature is extracted using the modality-specific pre-trained deep model on large generic dataset. Two-time-scale structures, one for the intra-clip and the other for the inter-clip, are proposed to capture the temporal dependency of video content and emotion states. To combine the complementary information from multiple modalities, an effective and efficient residual-based progressive training strategy is proposed. Each modality is step-wisely combined into the multi-modal model, responsible for completing the missing parts of features. With all those improvements above, our proposed prediction framework achieves better performance on the LIRIS-ACCEDE dataset with a large margin compared to the state-of-the-art.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Jie Zhang (847 papers)
  2. Yin Zhao (14 papers)
  3. Longjun Cai (10 papers)
  4. Chaoping Tu (3 papers)
  5. Wu Wei (3 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.