Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamic principal component regression for forecasting functional time series in a group structure (1909.00456v1)

Published 1 Sep 2019 in stat.AP and stat.ME

Abstract: When generating social policies and pricing annuity at national and subnational levels, it is essential both to forecast mortality accurately and ensure that forecasts at the subnational level add up to the forecasts at the national level. This has motivated recent developments in forecasting functional time series in a group structure, where static principal component analysis is used. In the presence of moderate to strong temporal dependence, static principal component analysis designed for independent and identically distributed functional data may be inadequate. Thus, through using the dynamic functional principal component analysis, we consider a functional time series forecasting method with static and dynamic principal component regression to forecast each series in a group structure. Through using the regional age-specific mortality rates in Japan obtained from the Japanese Mortality Database (2019), we investigate the point and interval forecast accuracies of our proposed extension, and subsequently make recommendations.

Summary

We haven't generated a summary for this paper yet.