Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

BooVAE: Boosting Approach for Continual Learning of VAE (1908.11853v3)

Published 30 Aug 2019 in cs.LG and stat.ML

Abstract: Variational autoencoder (VAE) is a deep generative model for unsupervised learning, allowing to encode observations into the meaningful latent space. VAE is prone to catastrophic forgetting when tasks arrive sequentially, and only the data for the current one is available. We address this problem of continual learning for VAEs. It is known that the choice of the prior distribution over the latent space is crucial for VAE in the non-continual setting. We argue that it can also be helpful to avoid catastrophic forgetting. We learn the approximation of the aggregated posterior as a prior for each task. This approximation is parametrised as an additive mixture of distributions induced by encoder evaluated at trainable pseudo-inputs. We use a greedy boosting-like approach with entropy regularisation to learn the components. This method encourages components diversity, which is essential as we aim at memorising the current task with the fewest components possible. Based on the learnable prior, we introduce an end-to-end approach for continual learning of VAEs and provide empirical studies on commonly used benchmarks (MNIST, Fashion MNIST, NotMNIST) and CelebA datasets. For each dataset, the proposed method avoids catastrophic forgetting in a fully automatic way.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Anna Kuzina (13 papers)
  2. Evgenii Egorov (10 papers)
  3. Evgeny Burnaev (189 papers)
Citations (23)

Summary

We haven't generated a summary for this paper yet.