Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ActivFORMS: A Formally-Founded Model-Based Approach to Engineer Self-Adaptive Systems (1908.11179v3)

Published 29 Aug 2019 in cs.SE

Abstract: Self-adaptation equips a computing system with a feedback loop that enables it dealing with change caused by uncertainties during operation, such as changing availability of resources and fluctuating workloads. To ensure that the system complies with the adaptation goals, recent research suggests the use of formal techniques at runtime. Yet, existing approaches have three limitations that affect their practical applicability: (i) they ignore correctness of the behavior of the feedback loop, (ii) they rely on exhaustive verification at runtime to select adaptation options to realize the adaptation goals, which is time and resource demanding, and (iii) they provide limited or no support for changing adaptation goals at runtime. To tackle these shortcomings, we present ActivFORMS (Active FORmal Models for Self-adaptation). ActivFORMS contributes an end-to-end approach for engineering self-adaptive systems, spanning four main stages of the life cycle of a feedback loop: design, deployment, runtime adaptation, and evolution. We also present ActivFORMS-ta, a tool-supported instance of ActivFORMS that leverages timed automata models and statistical model checking at runtime. We validate the research results using an IoT application for building security monitoring that is deployed in Leuven. The experimental results demonstrate that ActivFORMS supports correctness of the behavior of the feedback loop, achieves the adaptation goals in an efficient way, and supports changing adaptation goals at runtime.

Citations (27)

Summary

We haven't generated a summary for this paper yet.