Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uplink power control in cell-free massive MIMO via deep learning (1908.11121v1)

Published 29 Aug 2019 in cs.IT, eess.SP, and math.IT

Abstract: This paper focuses on the use of a deep learning approach to perform sum-rate-max and max-min power allocation in the uplink of a cell-free massive MIMO network. In particular, we train a deep neural network in order to learn the mapping between a set of input data and the optimal solution of the power allocation strategy. Numerical results show that the presence of the pilot contamination in the cell-free massive MIMO system does not significantly affect the learning capabilities of the neural network, that gives near-optimal performance. Conversely, with the introduction of the shadowing effect in the system the performance obtained with the deep learning approach gets significantly degraded with respect to the optimal one.

Citations (55)

Summary

We haven't generated a summary for this paper yet.