Locally type $\text{FP}_n$ and $n$-coherent categories
Abstract: We study finiteness conditions in Grothendieck categories by introducing the concepts of objects of type $\text{FP}_n$ and studying their closure properties with respect to short exact sequences. This allows us to propose a notion of locally type $\text{FP}_n$ categories as a generalization of locally finitely generated and locally finitely presented categories. We also define and study the injective objects that are Ext-orthogonal to the class of objects of type $\text{FP}_n$, called $\text{FP}_n$-injective objects, which will be the right half of a complete cotorsion pair. As a generalization of the category of modules over an $n$-coherent ring, we present the concept of $n$-coherent categories, which also recovers the notions of locally noetherian and locally coherent categories for $n = 0, 1$. Such categories will provide a setting in which the $\text{FP}_n$-injective cotorsion pair is hereditary, and where it is possible to construct (pre)covers by $\text{FP}_n$-injective objects. Moreover, we see how $n$-coherent categories provide a suitable framework for a nice theory of Gorenstein homological algebra with respect to the class of $\text{FP}_n$-injective modules. We define Gorenstein $\text{FP}_n$-injective objects and construct two different model category structures (one abelian and the other one exact) in which these Gorenstein objects are the fibrant objects.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.