Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Functional Decomposition of Finite Bandwidth Reproducing Kernel Hilbert Spaces (1908.10822v1)

Published 28 Aug 2019 in math.FA

Abstract: In this work, we consider "finite bandwidth" reproducing kernel Hilbert spaces which have orthonormal bases of the form $f_n(z)=zn \prod_{j=1}J \left( 1 - a_{n}w_j z \right)$, where $w_1 ,w_2, \ldots w_J $ are distinct points on the circle $\mathbb{T}$ and ${ a_n }$ is a sequence of complex numbers with limit $1$. We provide general conditions based on a matrix recursion that guarantee such spaces contain a functional multiple of the Hardy space. Then we apply this general method to obtain strong results for finite bandwidth spaces when $\lim_{n\rightarrow \infty} n (1-a_n)=p$. In particular, we show that point evaluation can be extended boundedly to precisely $J$ additional points on $\mathbb{T}$ and we obtain an explicit functional decomposition of these spaces for $p>1/2$ in analogy with a previous result in the tridiagonal case due to Adams and McGuire. We also prove that multiplication by $z$ is a bounded operator on these spaces and that they contain the polynomials.

Summary

We haven't generated a summary for this paper yet.