Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the overestimation of widely applicable Bayesian information criterion (1908.10572v1)

Published 28 Aug 2019 in stat.ME, math.ST, stat.ML, and stat.TH

Abstract: A widely applicable Bayesian information criterion (Watanabe, 2013) is applicable for both regular and singular models in the model selection problem. This criterion tends to overestimate the log marginal likelihood. We identify an overestimating term of a widely applicable Bayesian information criterion. Adjustment of the term gives an asymptotically unbiased estimator of the leading two terms of asymptotic expansion of the log marginal likelihood. In numerical experiments on regular and singular models, the adjustment resulted in smaller bias than the original criterion.

Citations (3)

Summary

We haven't generated a summary for this paper yet.