Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Linear Convergence of Adaptive Stochastic Gradient Descent (1908.10525v2)

Published 28 Aug 2019 in stat.ML, cs.LG, and math.OC

Abstract: We prove that the norm version of the adaptive stochastic gradient method (AdaGrad-Norm) achieves a linear convergence rate for a subset of either strongly convex functions or non-convex functions that satisfy the Polyak Lojasiewicz (PL) inequality. The paper introduces the notion of Restricted Uniform Inequality of Gradients (RUIG)---which is a measure of the balanced-ness of the stochastic gradient norms---to depict the landscape of a function. RUIG plays a key role in proving the robustness of AdaGrad-Norm to its hyper-parameter tuning in the stochastic setting. On top of RUIG, we develop a two-stage framework to prove the linear convergence of AdaGrad-Norm without knowing the parameters of the objective functions. This framework can likely be extended to other adaptive stepsize algorithms. The numerical experiments validate the theory and suggest future directions for improvement.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yuege Xie (6 papers)
  2. Xiaoxia Wu (30 papers)
  3. Rachel Ward (80 papers)
Citations (42)

Summary

We haven't generated a summary for this paper yet.