Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Statistical and Computational Trade-Offs in Kernel K-Means (1908.10284v1)

Published 27 Aug 2019 in stat.ML, cs.DS, and cs.LG

Abstract: We investigate the efficiency of k-means in terms of both statistical and computational requirements. More precisely, we study a Nystr\"om approach to kernel k-means. We analyze the statistical properties of the proposed method and show that it achieves the same accuracy of exact kernel k-means with only a fraction of computations. Indeed, we prove under basic assumptions that sampling $\sqrt{n}$ Nystr\"om landmarks allows to greatly reduce computational costs without incurring in any loss of accuracy. To the best of our knowledge this is the first result of this kind for unsupervised learning.

Citations (33)

Summary

We haven't generated a summary for this paper yet.