Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reference Network for Neural Machine Translation (1908.09920v1)

Published 23 Aug 2019 in cs.CL

Abstract: Neural Machine Translation (NMT) has achieved notable success in recent years. Such a framework usually generates translations in isolation. In contrast, human translators often refer to reference data, either rephrasing the intricate sentence fragments with common terms in source language, or just accessing to the golden translation directly. In this paper, we propose a Reference Network to incorporate referring process into translation decoding of NMT. To construct a \emph{reference book}, an intuitive way is to store the detailed translation history with extra memory, which is computationally expensive. Instead, we employ Local Coordinates Coding (LCC) to obtain global context vectors containing monolingual and bilingual contextual information for NMT decoding. Experimental results on Chinese-English and English-German tasks demonstrate that our proposed model is effective in improving the translation quality with lightweight computation cost.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Han Fu (25 papers)
  2. Chenghao Liu (61 papers)
  3. Jianling Sun (23 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.