Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Kindly Bent to Free Us (1908.09681v4)

Published 26 Aug 2019 in cs.PL

Abstract: Systems programming often requires the manipulation of resources like file handles, network connections, or dynamically allocated memory. Programmers need to follow certain protocols to handle these resources correctly. Violating these protocols causes bugs ranging from type mismatches over data races to use-after-free errors and memory leaks. These bugs often lead to security vulnerabilities. While statically typed programming languages guarantee type soundness and memory safety by design, most of them do not address issues arising from improper handling of resources. An important step towards handling resources is the adoption of linear and affine types that enforce single-threaded resource usage. However, the few languages supporting such types require heavy type annotations. We present Affe, an extension of ML that manages linearity and affinity properties using kinds and constrained types. In addition Affe supports the exclusive and shared borrowing of affine resources, inspired by features of Rust. Moreover, Affe retains the defining features of the ML family: it is an impure, strict, functional expression language with complete principal type inference and type abstraction. Affe does not require any linearity annotations in expressions and supports common functional programming idioms.

Citations (7)

Summary

We haven't generated a summary for this paper yet.