Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
89 tokens/sec
Gemini 2.5 Pro Premium
50 tokens/sec
GPT-5 Medium
29 tokens/sec
GPT-5 High Premium
28 tokens/sec
GPT-4o
90 tokens/sec
DeepSeek R1 via Azure Premium
55 tokens/sec
GPT OSS 120B via Groq Premium
468 tokens/sec
Kimi K2 via Groq Premium
207 tokens/sec
2000 character limit reached

Deep Concept-wise Temporal Convolutional Networks for Action Localization (1908.09442v1)

Published 26 Aug 2019 in cs.CV

Abstract: Existing action localization approaches adopt shallow temporal convolutional networks (\ie, TCN) on 1D feature map extracted from video frames. In this paper, we empirically find that stacking more conventional temporal convolution layers actually deteriorates action classification performance, possibly ascribing to that all channels of 1D feature map, which generally are highly abstract and can be regarded as latent concepts, are excessively recombined in temporal convolution. To address this issue, we introduce a novel concept-wise temporal convolution (CTC) layer as an alternative to conventional temporal convolution layer for training deeper action localization networks. Instead of recombining latent concepts, CTC layer deploys a number of temporal filters to each concept separately with shared filter parameters across concepts. Thus can capture common temporal patterns of different concepts and significantly enrich representation ability. Via stacking CTC layers, we proposed a deep concept-wise temporal convolutional network (C-TCN), which boosts the state-of-the-art action localization performance on THUMOS'14 from 42.8 to 52.1 in terms of mAP(\%), achieving a relative improvement of 21.7\%. Favorable result is also obtained on ActivityNet.

Citations (29)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube