Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Riemannian Geometry of Symmetric Positive Definite Matrices via Cholesky Decomposition (1908.09326v1)

Published 25 Aug 2019 in math.DG, math.ST, and stat.TH

Abstract: We present a new Riemannian metric, termed Log-Cholesky metric, on the manifold of symmetric positive definite (SPD) matrices via Cholesky decomposition. We first construct a Lie group structure and a bi-invariant metric on Cholesky space, the collection of lower triangular matrices whose diagonal elements are all positive. Such group structure and metric are then pushed forward to the space of SPD matrices via the inverse of Cholesky decomposition that is a bijective map between Cholesky space and SPD matrix space. This new Riemannian metric and Lie group structure fully circumvent swelling effect, in the sense that the determinant of the Fr\'echet average of a set of SPD matrices under the presented metric, called Log-Cholesky average, is between the minimum and the maximum of the determinants of the original SPD matrices. Comparing to existing metrics such as the affine-invariant metric and Log-Euclidean metric, the presented metric is simpler, more computationally efficient and numerically stabler. In particular, parallel transport along geodesics under Log-Cholesky metric is given in a closed and easy-to-compute form.

Citations (108)

Summary

We haven't generated a summary for this paper yet.