Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

You Can't Publish Replication Studies (and How to Anyways) (1908.08893v1)

Published 23 Aug 2019 in cs.HC and cs.GR

Abstract: Reproducibility has been increasingly encouraged by communities of science in order to validate experimental conclusions, and replication studies represent a significant opportunity to vision scientists wishing contribute new perceptual models, methods, or insights to the visualization community. Unfortunately, the notion of replication of previous studies does not lend itself to how we communicate research findings. Simple put, studies that re-conduct and confirm earlier results do not hold any novelty, a key element to the modern research publication system. Nevertheless, savvy researchers have discovered ways to produce replication studies by embedding them into other sufficiently novel studies. In this position paper, we define three methods -- re-evaluation, expansion, and specialization -- for embedding a replication study into a novel published work. Within this context, we provide a non-exhaustive case study on replications of Cleveland and McGill's seminal work on graphical perception. As it turns out, numerous replication studies have been carried out based on that work, which have both confirmed prior findings and shined new light on our understanding of human perception. Finally, we discuss how publishing a true replication study should be avoided, while providing suggestions for how vision scientists and others can still use replication studies as a vehicle to producing visualization research publications.

Citations (4)

Summary

We haven't generated a summary for this paper yet.