Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Decentralized Cooperative Online Estimation With Random Observation Matrices, Communication Graphs and Time Delays (1908.08245v6)

Published 22 Aug 2019 in eess.SP, cs.LG, cs.SY, and eess.SY

Abstract: We analyze convergence of decentralized cooperative online estimation algorithms by a network of multiple nodes via information exchanging in an uncertain environment. Each node has a linear observation of an unknown parameter with randomly time-varying observation matrices. The underlying communication network is modeled by a sequence of random digraphs and is subjected to nonuniform random time-varying delays in channels. Each node runs an online estimation algorithm consisting of a consensus term taking a weighted sum of its own estimate and neighbours' delayed estimates, and an innovation term processing its own new measurement at each time step. By stochastic time-varying system, martingale convergence theories and the binomial expansion of random matrix products, we transform the convergence analysis of the algorithm into that of the mathematical expectation of random matrix products. Firstly, for the delay-free case, we show that the algorithm gains can be designed properly such that all nodes' estimates converge to the true parameter in mean square and almost surely if the observation matrices and communication graphs satisfy the stochastic spatiotemporal persistence of excitation condition. Secondly, for the case with time delays, we introduce delay matrices to model the random time-varying communication delays between nodes. It is shown that under the stochastic spatio-temporal persistence of excitation condition, for any given boundeddelays, proper algorithm gains can be designed to guarantee mean square convergence for the case with conditionally balanced digraphs.

Citations (2)

Summary

We haven't generated a summary for this paper yet.