Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Implementing Ranking-Based Semantics in ConArg: a Preliminary Report (1908.07784v2)

Published 21 Aug 2019 in cs.AI

Abstract: ConArg is a suite of tools that offers a wide series of applications for dealing with argumentation problems. In this work, we present the advances we made in implementing a ranking-based semantics, based on computational choice power indexes, within ConArg. Such kind of semantics represents a method for sorting the arguments of an abstract argumentation framework, according to some preference relation. The ranking-based semantics we implement relies on Shapley, Banzhaf, Deegan-Packel and Johnston power index, transferring well know properties from computational social choice to argumentation framework ranking-based semantics.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. Power Indices and Minimal Winning Coalitions in Simple Games with Externalities. UB Economics Working Papers E15/328, University of Barcelona - Department of Actuarial, Financial and Economic Mathematics, 2015.
  2. L. Amgoud and J. Ben-Naim. Ranking-Based Semantics for Argumentation Frameworks. In Proc. SUM 2013 - 7th International Conference, volume 8078 of LNCS, pages 134–147. Springer, 2013.
  3. J. F. Banzhaf. Weighted Voting Doesn’t Work: A Mathematical Analysis. Rutgers Law Rev, 19(2):317–343, 1965.
  4. An introduction to argumentation semantics. Knowl Eng Rev, 26(4):365–410, 2011.
  5. P. Besnard and A. Hunter. A logic-based theory of deductive arguments. Artif Intell, 128(1-2):203–235, 2001.
  6. A Tool For Ranking Arguments Through Voting-Games Power Indexes. In Proceedings 34th CILC, volume 2396 of CEUR Workshop Proceedings, pages 193–201. CEUR-WS.org, 2019.
  7. A Cooperative-game Approach to Share Acceptability and Rank Arguments. In Proceedings of the 2nd Workshop on Advances In Argumentation In Artificial Intelligence, AI3@AI*IA, volume 2296 of CEUR Workshop Proceedings, pages 86–90. CEUR-WS.org, 2018.
  8. Probabilistic Argumentation Frameworks with MetaProbLog and ConArg. In Proceedings of IEEE 30th International Conference on Tools with Artificial Intelligence, ICTAI, pages 675–679. IEEE, 2018.
  9. ConArg: A Tool for Classical and Weighted Argumentation. In Computational Models of Argument - Proceedings of COMMA, volume 287 of Frontiers in Artificial Intelligence and Applications, pages 463–464. IOS Press, 2016.
  10. S. Bistarelli and F. Santini. ConArg: A Constraint-Based Computational Framework for Argumentation Systems. In Proceedings of IEEE 23rd International Conference on Tools with Artificial Intelligence, ICTAI, pages 605–612. IEEE Computer Society, 2011.
  11. A Comparative Study of Ranking-Based Semantics for Abstract Argumentation. In Proc. Thirtieth AAAI Conference on Artificial Intelligence, pages 914–920. AAAI Press, 2016.
  12. M. Caminada. On the Issue of Reinstatement in Argumentation. In Lect Notes Artif Int, 10th European Conference, JELIA, volume 4160 of LNCS, pages 111–123. Springer, 2006.
  13. Argumentation for explainable scheduling. In Proc. Thirty-Third AAAI Conference on Artificial Intelligence, volume 33, pages 2752–2759. AAAI Press, 2019.
  14. J. Derks and H. Peters. A Shapley Value for Games with Restricted Coalitions. Int J Game Theory, 21(4):351–60, 1993.
  15. P. Dondio. Ranking Semantics Based on Subgraphs Analysis. In Proc. 17th AAMAS International Conference, pages 1132–1140. IFAAMAS Richland, SC, USA / ACM, 2018.
  16. P. M. Dung. On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games. Artif Intell, 77(2):321–358, 1995.
  17. Complexity of abstract argumentation. In Argumentation in Artificial Intelligence, pages 85–104. Springer, 2009.
  18. Computing power indices in weighted multiple majority games. Math Soc Sci, 46(1):63–80, 2003.
  19. S. Gabbriellini and P. Torroni. Abstract argumentation for agent-based social simulations. In Proc. 10th ArgMAS International Workshop, pages 1–14, 2013.
  20. D. Grossi and S. Modgil. On the Graded Acceptability of Arguments. In Proc. IJCAI-15, pages 868–874. AAAI Press, 2015.
  21. D. Keith. Encyclopedia of Power. SAGE Publications, Inc., 2011.
  22. S. Kurz. Which criteria qualify power indices for applications? - A comment to “the story of the poor public good index”. CoRR, abs/1812.05808, 2018.
  23. J. Leite and J. Martins. Social Abstract Argumentation. In Proc. IJCAI-11, pages 2287–2292. IJCAI/AAAI, 2011.
  24. Argumentation theory in health care. In Proc. CBMS 2012, 25th IEEE International Symposium, pages 1–6. IEEE Computer Society, 2012.
  25. T. Matsui and Y. Matsui. A survey of algorithms for calculating power indices of weighted majority games. J Oper Res Soc Jpn, 43:71–86, 2000.
  26. P. Matt and F. Toni. A Game-Theoretic Measure of Argument Strength for Abstract Argumentation. In Lec Notes Artif Int, 11th European Conference, JELIA, volume 5293 of LNCS, pages 285–297. Springer, 2008.
  27. L. S. Shapley. Contributions to the Theory of Games, volume II of AM-28. Princeton University Press, 1953.
  28. E. Winter. The shapley value. In Handbook of Game Theory with Economic Applications, volume 3, pages 2025–2054. Elsevier, 2002.
Citations (2)

Summary

We haven't generated a summary for this paper yet.