Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Sensing of Correlated Spatiotemporal Signals: A Stochastic Gradient Approach (1908.07674v1)

Published 21 Aug 2019 in eess.SP and eess.IV

Abstract: A significantly low cost and tractable progressive learning approach is proposed and discussed for efficient spatiotemporal monitoring of a completely unknown, two dimensional correlated signal distribution in localized wireless sensor field. The spatial distribution is compressed into a number of its contour lines and only those sensors that their sensor observations are in a $\Delta$ margin of the contour levels are reporting to the information fusion center (IFC). The proposed algorithm progressively finds the model parameters in iterations, by using extrapolation in curve fitting, and stochastic gradient method for spatial monitoring. The IFC tracks the signal variations using these parameters, over time. The monitoring performance and the cost of the proposed algorithm are discussed, in this letter.

Citations (5)

Summary

We haven't generated a summary for this paper yet.