Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Heat kernel estimates and parabolic Harnack inequalities for symmetric Dirichlet forms (1908.07650v1)

Published 20 Aug 2019 in math.PR and math.AP

Abstract: In this paper, we consider the following symmetric Dirichlet forms on a metric measure space $(M,d,\mu)$: $$\mathcal{E}(f,g) = \mathcal{E}({(c)}(f,g)+\int_{M\times M} (f(x)-f(y))(g(x)-g(y))\,J(dx,dy),$$ where $\mathcal{E}({(c)}$ is a strongly local symmetric bilinear form and $J(dx,dy)$ is a symmetric Random measure on $M\times M$. Under general volume doubling condition on $(M,d,\mu)$ and some mild assumptions on scaling functions, we establish stability results for upper bounds of heat kernel (resp.\ two-sided heat kernel estimates) in terms of the jumping kernels, the cut-off Sobolev inequalities, and the Faber-Krahn inequalities (resp.\ the Poincar\'e inequalities). We also obtain characterizations of parabolic Harnack inequalities. Our results apply to symmetric diffusions with jumps even when the underlying spaces have walk dimensions larger than $2$.

Summary

We haven't generated a summary for this paper yet.