Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Feature Interaction-aware Graph Neural Networks (1908.07110v2)

Published 19 Aug 2019 in cs.LG and stat.ML

Abstract: Inspired by the immense success of deep learning, graph neural networks (GNNs) are widely used to learn powerful node representations and have demonstrated promising performance on different graph learning tasks. However, most real-world graphs often come with high-dimensional and sparse node features, rendering the learned node representations from existing GNN architectures less expressive. In this paper, we propose \textit{Feature Interaction-aware Graph Neural Networks (FI-GNNs)}, a plug-and-play GNN framework for learning node representations encoded with informative feature interactions. Specifically, the proposed framework is able to highlight informative feature interactions in a personalized manner and further learn highly expressive node representations on feature-sparse graphs. Extensive experiments on various datasets demonstrate the superior capability of FI-GNNs for graph learning tasks.

Citations (8)

Summary

We haven't generated a summary for this paper yet.