Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

Topological order in matrix Ising models (1908.07058v1)

Published 19 Aug 2019 in hep-th and cond-mat.stat-mech

Abstract: We study a family of models for an $N_1 \times N_2$ matrix worth of Ising spins $S_{aB}$. In the large $N_i$ limit we show that the spins soften, so that the partition function is described by a bosonic matrix integral with a single `spherical' constraint. In this way we generalize the results of [1] to a wide class of Ising Hamiltonians with $O(N_1,\mathbb{Z})\times O(N_2,\mathbb{Z})$ symmetry. The models can undergo topological large $N$ phase transitions in which the thermal expectation value of the distribution of singular values of the matrix $S_{aB}$ becomes disconnected. This topological transition competes with low temperature glassy and magnetically ordered phases.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.