Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Understanding Undesirable Word Embedding Associations (1908.06361v1)

Published 18 Aug 2019 in cs.CL

Abstract: Word embeddings are often criticized for capturing undesirable word associations such as gender stereotypes. However, methods for measuring and removing such biases remain poorly understood. We show that for any embedding model that implicitly does matrix factorization, debiasing vectors post hoc using subspace projection (Bolukbasi et al., 2016) is, under certain conditions, equivalent to training on an unbiased corpus. We also prove that WEAT, the most common association test for word embeddings, systematically overestimates bias. Given that the subspace projection method is provably effective, we use it to derive a new measure of association called the $\textit{relational inner product association}$ (RIPA). Experiments with RIPA reveal that, on average, skipgram with negative sampling (SGNS) does not make most words any more gendered than they are in the training corpus. However, for gender-stereotyped words, SGNS actually amplifies the gender association in the corpus.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Kawin Ethayarajh (19 papers)
  2. David Duvenaud (65 papers)
  3. Graeme Hirst (14 papers)
Citations (121)

Summary

We haven't generated a summary for this paper yet.