Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributional Negative Sampling for Knowledge Base Completion (1908.06178v1)

Published 16 Aug 2019 in cs.LG, cs.AI, and stat.ML

Abstract: State-of-the-art approaches for Knowledge Base Completion (KBC) exploit deep neural networks trained with both false and true assertions: positive assertions are explicitly taken from the knowledge base, whereas negative ones are generated by random sampling of entities. In this paper, we argue that random sampling is not a good training strategy since it is highly likely to generate a huge number of nonsensical assertions during training, which does not provide relevant training signal to the system. Hence, it slows down the learning process and decreases accuracy. To address this issue, we propose an alternative approach called Distributional Negative Sampling that generates meaningful negative examples which are highly likely to be false. Our approach achieves a significant improvement in Mean Reciprocal Rank values amongst two different KBC algorithms in three standard academic benchmarks.

Citations (7)

Summary

We haven't generated a summary for this paper yet.