Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sub-Spectrogram Segmentation for Environmental Sound Classification via Convolutional Recurrent Neural Network and Score Level Fusion (1908.05863v1)

Published 16 Aug 2019 in cs.SD, cs.LG, and eess.AS

Abstract: Environmental Sound Classification (ESC) is an important and challenging problem, and feature representation is a critical and even decisive factor in ESC. Feature representation ability directly affects the accuracy of sound classification. Therefore, the ESC performance is heavily dependent on the effectiveness of representative features extracted from the environmental sounds. In this paper, we propose a subspectrogram segmentation based ESC classification framework. In addition, we adopt the proposed Convolutional Recurrent Neural Network (CRNN) and score level fusion to jointly improve the classification accuracy. Extensive truncation schemes are evaluated to find the optimal number and the corresponding band ranges of sub-spectrograms. Based on the numerical experiments, the proposed framework can achieve 81.9% ESC classification accuracy on the public dataset ESC-50, which provides 9.1% accuracy improvement over traditional baseline schemes.

Citations (11)

Summary

We haven't generated a summary for this paper yet.