Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unpaired Cross-lingual Image Caption Generation with Self-Supervised Rewards (1908.05407v1)

Published 15 Aug 2019 in cs.CV and cs.CL

Abstract: Generating image descriptions in different languages is essential to satisfy users worldwide. However, it is prohibitively expensive to collect large-scale paired image-caption dataset for every target language which is critical for training descent image captioning models. Previous works tackle the unpaired cross-lingual image captioning problem through a pivot language, which is with the help of paired image-caption data in the pivot language and pivot-to-target machine translation models. However, such language-pivoted approach suffers from inaccuracy brought by the pivot-to-target translation, including disfluency and visual irrelevancy errors. In this paper, we propose to generate cross-lingual image captions with self-supervised rewards in the reinforcement learning framework to alleviate these two types of errors. We employ self-supervision from mono-lingual corpus in the target language to provide fluency reward, and propose a multi-level visual semantic matching model to provide both sentence-level and concept-level visual relevancy rewards. We conduct extensive experiments for unpaired cross-lingual image captioning in both English and Chinese respectively on two widely used image caption corpora. The proposed approach achieves significant performance improvement over state-of-the-art methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Yuqing Song (13 papers)
  2. Shizhe Chen (52 papers)
  3. Yida Zhao (12 papers)
  4. Qin Jin (94 papers)
Citations (39)

Summary

We haven't generated a summary for this paper yet.