Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mixed pooling of seasonality for time series forecasting: An application to pallet transport data (1908.05339v2)

Published 14 Aug 2019 in stat.ML, cs.LG, and stat.AP

Abstract: Multiple seasonal patterns play a key role in time series forecasting, especially for business time series where seasonal effects are often dramatic. Previous approaches including Fourier decomposition, exponential smoothing, and seasonal autoregressive integrated moving average (SARIMA) models do not reflect the distinct characteristics of each period in seasonal patterns. We propose a mixed hierarchical seasonality (MHS) model. Intermediate parameters for each seasonal period are first estimated, and a mixture of intermediate parameters is taken. This results in a model that automatically learns the relative importance of each seasonality and addresses the interactions between them. The model is implemented with Stan, a probabilistic language, and was compared with three existing models on a real-world dataset of pallet transport from a logistic network. Our new model achieved considerable improvements in terms of out of sample prediction error (MAPE) and predictive density (ELPD) compared to complete pooling, Fourier decomposition, and SARIMA model.

Summary

We haven't generated a summary for this paper yet.