Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Online Multi-target Visual Tracking using a HISP Filter with Discriminative Deep Appearance Learning (1908.03945v6)

Published 11 Aug 2019 in cs.CV

Abstract: We propose a novel online multi-target visual tracker based on the recently developed Hypothesized and Independent Stochastic Population (HISP) filter. The HISP filter combines advantages of traditional tracking approaches like MHT and point-process-based approaches like PHD filter, and it has linear complexity while maintaining track identities. We apply this filter for tracking multiple targets in video sequences acquired under varying environmental conditions and targets density using a tracking-by-detection approach. We also adopt deep CNN appearance representation by training a verification-identification network (VerIdNet) on large-scale person re-identification data sets. We construct an augmented likelihood in a principled manner using this deep CNN appearance features and spatio-temporal information. Furthermore, we solve the problem of two or more targets having identical label considering the weight propagated with each confirmed hypothesis. Extensive experiments on MOT16 and MOT17 benchmark data sets show that our tracker significantly outperforms several state-of-the-art trackers in terms of tracking accuracy.

Citations (22)

Summary

We haven't generated a summary for this paper yet.