Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lifting methods for manifold-valued variational problems (1908.03776v1)

Published 10 Aug 2019 in math.NA and cs.NA

Abstract: Lifting methods allow to transform hard variational problems such as segmentation and optical flow estimation into convex problems in a suitable higher-dimensional space. The lifted models can then be efficiently solved to a global optimum, which allows to find approximate global minimizers of the original problem. Recently, these techniques have also been applied to problems with values in a manifold. We provide a review of such methods in a refined framework based on a finite element discretization of the range, which extends the concept of sublabel-accurate lifting to manifolds. We also generalize existing methods for total variation regularization to support general convex regularization.

Citations (12)

Summary

We haven't generated a summary for this paper yet.