Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An elementary renormalization-group approach to the Generalized Central Limit Theorem and Extreme Value Distributions (1908.03580v1)

Published 9 Aug 2019 in cond-mat.stat-mech and cond-mat.dis-nn

Abstract: The Generalized Central Limit Theorem is a remarkable generalization of the Central Limit Theorem, showing that the sum of a large number of independent, identically-distributed (i.i.d) random variables with infinite variance may converge under appropriate scaling to a distribution belonging to a special family known as Levy stable distributions. Similarly, the maximum of i.i.d. variables may converge to a distribution belonging to one of three universality classes (Gumbel, Weibull and Frechet). Here, we rederive these known results following a mathematically non-rigorous yet highly transparent renormalization-group-like approach that captures both of these universal results following a nearly identical procedure.

Summary

We haven't generated a summary for this paper yet.