Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Artificially Evolved Chunks for Morphosyntactic Analysis (1908.03480v2)

Published 9 Aug 2019 in cs.CL

Abstract: We introduce a language-agnostic evolutionary technique for automatically extracting chunks from dependency treebanks. We evaluate these chunks on a number of morphosyntactic tasks, namely POS tagging, morphological feature tagging, and dependency parsing. We test the utility of these chunks in a host of different ways. We first learn chunking as one task in a shared multi-task framework together with POS and morphological feature tagging. The predictions from this network are then used as input to augment sequence-labelling dependency parsing. Finally, we investigate the impact chunks have on dependency parsing in a multi-task framework. Our results from these analyses show that these chunks improve performance at different levels of syntactic abstraction on English UD treebanks and a small, diverse subset of non-English UD treebanks.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.