Papers
Topics
Authors
Recent
2000 character limit reached

NeuPDE: Neural Network Based Ordinary and Partial Differential Equations for Modeling Time-Dependent Data

Published 8 Aug 2019 in cs.LG and stat.ML | (1908.03190v1)

Abstract: We propose a neural network based approach for extracting models from dynamic data using ordinary and partial differential equations. In particular, given a time-series or spatio-temporal dataset, we seek to identify an accurate governing system which respects the intrinsic differential structure. The unknown governing model is parameterized by using both (shallow) multilayer perceptrons and nonlinear differential terms, in order to incorporate relevant correlations between spatio-temporal samples. We demonstrate the approach on several examples where the data is sampled from various dynamical systems and give a comparison to recurrent networks and other data-discovery methods. In addition, we show that for MNIST and Fashion MNIST, our approach lowers the parameter cost as compared to other deep neural networks.

Citations (88)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.